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Abstract: The optical properties of nanosize quantum-dot (QD) arrays are
found to vary significantly around the exciton resonance frequency of the
QDs. In order to simulate the interactions between electromagnetic waves
and QD arrays, a general auxiliary-differential-equation, finite-difference
time-domain approach is introduced and utilized in this article. Using
this numerical method, the exciton-polariton resonances of single-layer
and double-layer GaAs QD arrays are studied. The optical properties of
a single-layer QD array are found to be characterized by the Mie reso-
nance of its constituent QDs, while a double-layer QD array is characterized
by the quasi-dipole formed by two QDs positioned in each of the two layers.
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36. G. A. Baker, Essentials of Padé approximants, Academic Press, New York, 1975.
37. V. S. C. Manga Rao, S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,”

Phys. Rev. B 75, 205437 (2007).

1. Introduction

Miniaturization and high-density integration constitute important factors in contemporary fab-
rication of photonic components. The main obstacle for further progress of these factors is
governed by the diffraction limit of light, something that has led to a wealth of approaches
proposed to circumvent this problem. One of these have concerned the utilization of surface
plasmon polaritons, that is coupled polaritons formed by photons and free electrons in a metal
[1, 2]. Recently, quantum-dot (QD) arrays have been found to strongly manipulate electromag-
netic (EM) waves whose wavelengths are one or two orders of magnitude the radius of the
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QDs [3, 4, 5, 6]. For instance, a single-layer array of GaAs/Al xGa1−xAs QDs with a radius
of 20 nm is found to significantly reflect an EM wave with a wavelength of about 800 nm.
The QD-based optical devices could therefore provide a possible approach to decrease the size
of devices and further increase the integral density of optical circuits [4, 5]. This possibility
has now sparked an abundance of research, both experimentally [7, 8, 9, 10] and theoretically
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

The underlying physical mechanism of QD-based devices is provided by the exciton-
polariton resonances of the QDs [21]. Under an incident EM wave, a confined exciton can be
optically excited in the QD. When a photon and an exciton interact in the dispersion-crossover
region, a combined quasi-particle, normally known as an exciton polariton, is formed [22].
Because excitons in a macroscopic system spread through the whole structure with an appro-
priate dispersion, they must be treated with a nonlocal theory [21, 23]. Linear response theory
constitutes such a theory, giving the dielectric polarization as

P(r,ω) = T (ω)Φ(r)
∫

Φ(r′)E(r′,ω)dr′, (1)

where Φ(r) := Φ(r,r) is the ground-state wavefunction of the exciton excited in QD (whose
center is denoted by a),

Φ(re,rh) =
1

|r−a|√2πR
sin

(
π |r−a|

R

)
1√
πa3

B

e−
re−rh

aB . (2)

In addition, the coefficient T (ω) is given by

T (ω) =
2πε0εbωLT ω0a3

B

ω2
0 −ω2−2 jωδ

. (3)

Here ωLT and aB are the exciton longitudinal-transverse splitting and Bohr radius in the cor-
responding bulk semiconductor, respectively. ε b is the dielectric index of the well material,
j2 = −1, δ is a phenomenological parameter describing the decay of single-QD exciton, and
R is the radius of the quantum dots. ω0 is the ground-state exciton resonance frequency of the
QDs, which is given by

ω0 =
Eg

h̄
+

h̄π2

2m0R2e
(

1
me

+
1

mh
), (4)

when the QD is assumed as a spherical square quantum well. Here Eg is the band gap in the
corresponding bulk semiconductor, e is the elementary charge, m e and mh are the electronic
effective mass and hole effective mass, respectively.

To numerically simulate the interaction between EM waves and QD-based devices, plane-
wave-expansion methodologies have frequently been employed. Such an approach was pro-
posed in Ref.[3], and further extended in Ref.[5, 6]. However, it has turned out very difficult
to simulate complicated structures and calculate the resonance modes. In this article, we intro-
duce a general auxiliary-differential-equation,finite-difference time-domain (FDTD) approach,
which is more powerful and applicable than the original plane-wave-expansion method. This
method is further employed for simulations of exciton-polariton resonances in quantum-dot ar-
rays. It should be emphasized that, although the auxiliary-differential-equation FDTD method
is very popular in modeling the pulse dynamics of dispersive and nonlinear media, it is the first
time, to the best of our knowledge, that this method utilized to simulate quantum dots with
nonlocal dielectric polarizations.

Our paper is organized as follows: In Section II we present the numerical calculation method.
Numerical results and analysis are presented in Section III. We further discuss our calculation
approach and results in Section IV. Section V contains our conclusions.
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Fig. 1. (a) Schematic drawing of a freestanding dielectric film embedded with a square ar-
ray of quantum dots. The quantum dot has a radius of R, the square array has a period of
L, and the dielectric film has a thickness of 2R. (b) A cross section of the computational
domain consisting of a single unit cell of the quantum-dot array. Periodic boundary con-
ditions are imposed on the four surfaces perpendicular to the dielectric film, while perfect
matched layers are imposed at the top and bottom surfaces. The input light wave is polar-
ized along the z direction and propagates to the top dielectric surface along the x direction.
The transmitted electric field is collected at the detector point.

2. Calculational method

The interaction between light and nonlocal QDs can be described by the time-dependent
Maxwell’s equations that are coupled to an equation for the light-induced excitonic polarization
current in the QD [24],

∇×E = −μ0
∂H
∂ t

, ∇×H = ε0
∂E
∂ t

+J, J =
∂P
∂ t

. (5)

Here E is the electric field vector, H is the magnetic field vector, J is a current density corre-
sponding to the nonlocal polarization P of the QD. To solve the above curl equations, Yee’s
discretization scheme is here employed [25]. All field variables are defined on a cubic grid.
Electric and magnetic fields are temporally separated by one-half time-step and spatially inter-
laced by half a grid cell. Based on this scheme, center differences in both space and time are
applied to approximate Maxwell’s equations.

In order to obtain the relation between the current J and the polarization P, Eq.(1) is rewritten
as

P(r,ω) =
A

ω2
0 −ω2−2 jωδ

Enew(r,ω), (6)
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where A = πε0εbωLT ω0, and the new variable Enew(ω) is defined as

sinc(
π |r−a|

R
)
∫

sinc(
π |r′ −a|

R
)E(r′,ω)

dr′

R3 , (7)

with sinc(x) = sin(x)/x. It should be stressed that the dielectric permittivity of the QD is then
very similar to that of a Lorentz-type medium.

Next the polarization current density J(ω) is introduced as

J(r,ω) ≡− jωP(r,ω) =
−A jω

ω2
0 −ω2−2 jωδ

Enew(r,ω), (8)

with j2 = −1. Fourier transforming the above equation, its time-domain analog can be written
as

ω2
0 J(t)+2δ

d
dt

J(t)+
d2

dt2 J(t) = A
d
dt

Enew(t). (9)

With the discrete time step Δt, and notation Jn ≡ J(nΔt), a time-difference expression is then
found as

Jn+1 = apJn +bpJn−1 + cp[E
n+1/2
new −En−1/2

new ], (10)

where

ap =
2−ω2

0Δt2

1+ δΔt
, bp =

δΔt −1
1+ δΔt

, cp =
AΔt

1+ δΔt
. (11)

On the other hand, following the Ampere’s law,

∇×H(t) = ε0εb
d
dt

E(t)+J(t), (12)

the finite-difference expression can be written as

En+3/2 = En+1/2 +
Δt

ε0εb
[∇×Hn+1−Jn+1]. (13)

Equation 10 with Eq. 13 therefore can be utilized to simulate the nonlocal polarization of
the QDs in two steps: (1) From Jn, Hn and En−1/2 obtain En+1/2; (2) From En−1/2 and En+1/2

obtain En−1/2
new and En+1/2

new and therefore Jn+1, meanwhile, from En+1/2 and Hn obtain Hn+1.
Note that the electric field E is synchronous with J in Ref.[25] while it here is separated by Δt/2.
Through numerical validation, we found that our equations are stable and effective. Moreover,
they can further be in favor of simplifying the following finite-difference expression of the
electric field E.

In order to obtain the frequency spectrum as well as the resonance mode, a time-dependent
signal is generally transformed into the frequency domain by using discrete Fourier transforma-
tion. A detailed description of this transform in FDTD is presented in Appendix A. However,
due to that the exciton-polariton resonances of the QD arrays are very sharp, the frequency res-
olution of the spectrum obtained by the discrete Fourier transform is too poor to distinguish the
resonances. We then employ the Padé approximation instead of the discrete Fourier transform
to improve the accuracy of the frequency response (Appendix B). Moreover, to alleviate the
calculational burden of the Padé approximation, the original time-dependent FDTD output is
decimated by a factor of 1/50, to reduce the number of time samples.

#90132 - $15.00 USD Received 27 Nov 2007; revised 23 Jan 2008; accepted 23 Jan 2008; published 18 Mar 2008

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  4511



-0.5 0.0 0.5 1.0
0.0

0.5

1.0

N
or

m
al

iz
ed

 s
pe

ct
ru

m

[ω-ω
0
]/ω

LT

  L=60  nm
  L=100 nm
  L=150 nm

Fig. 2. The normalized amplitude spectra (at the center of the QD) of single-layer quantum-
dot arrays with different period L. The dielectric film has a thickness of 40 nm.

3. Results and analysis

The geometry of the system studied computationally is shown in Fig. 1. A freestanding di-
electric slab embedded with QD arrays is placed in the middle of the space with its top and
bottom surfaces positioned perpendicular to the x direction. Plane waves propagating along the
x axis are generated by exciting a plane of identical dipoles in phase. Perfect matched absorb-
ing boundary conditions are applied at the top and bottom of the computational space whereas
periodic boundary conditions apply on other boundaries [25]. By placing one unit cell of the
periodic QD array in the computational space, we can simulate the temporal transmission of
the plane waves normally incident on the QD array which extends infinitely in the y and z
directions.

The size of the spatial grid cell Δ is 2 nm in the numerical calculations. The total number of
time steps involved in the numerical analysis is 100000 with each time step Δt = Δ/2c ≈ 3.34
attosecond, where c is the speed of light in vacuum. A time-discrete unit pulse is given as the
initial excitation. The dielectric constant of the dielectric slab εb is fixed as 12.40, and the square
QD array has a period of L in the yz plane. The radius of the QDs is assumed to be uniformly 20
nm. GaAs QDs are considered here. The effective masses of electrons and holes are m e = 0.067
and mh = 0.51, respectively, in the unit of electron rest mass, and the band gap is E g = 1.51914
eV [26]. The corresponding ground-state exciton resonance frequency ω 0 of QDs is then given
as 1.535 eV [5]. The exciton longitudinal-transverse splitting ω LT is assumed to be 0.01 eV, and
the δ is assumed to be zero.

We first consider the effect of the period L on the resonance frequency of single-layer QD
arrays. Three different structures are studied and the amplitude spectra (at the center of the QD)
are plotted in Fig.2. In each structure, a strong exciton-polariton resonance is observed around
the ground-state exciton resonance of QD. Three important conclusions can be deduced:

(1) The quality factor Q of the exciton-polariton resonance, defined by the ratio between the
resonance frequency and its bandwidth ω/Δω , is very big, indicating a strong localization of
the EM field inside the QD array. For instance, Q is about as high as 760 for the structure with
L = 60 nm. It is for this huge Q that the Padé approximation instead of the discrete Fourier
transform is employed in this paper.

(2) The resonance frequency decreases with the increase of L, that is, it is ω 0 +0.404ωLT for
L = 60 nm, ω0 +0.363ωLT for L = 100 nm, and ω0 +0.345ωLT for L = 150 nm.

(3) The bandwidth of the resonance decreases with the increase of L. This has also been
observed from the temporal behavior of the polarization current density J(t) (the results are
not presented here). The amplitude of the current density remains almost unchanged for the

#90132 - $15.00 USD Received 27 Nov 2007; revised 23 Jan 2008; accepted 23 Jan 2008; published 18 Mar 2008

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  4512



0.10 0.51 2.6

(a1) (a2)

(b1) (b2)

(c1) (c2)

zx

y y

|E
z
|2

Fig. 3. The distribution of |E2
z | of single-layer quantum-dot arrays at resonant frequencies,

at vertical (x-y plane) cross section and cross section (y-z plane), respectively. (a) L =
60 nm and the resonant frequency is ω0 + 0.404ωLT. (b) L = 100 nm and the resonant
frequency is ω0 +0.363ωLT. (c) L = 150 nm and the resonant frequency is ω0 +0.345ωLT.
The position of quantum dot is marked by dotted lines.

structure with L = 150 nm, while it decreases fast for L = 60 nm. The transfer of energy stored
inside the QD is, therefore, much slower for the larger L.

The above observations can be explained mainly by two facts, (1) the EM field is strongly
localized inside the QD but not within the dielectric slab, and (2) the coupling of two neighbor-
ing QDs, which can be approximated as dipole-dipole coupling, exponentially decreases with
the increase of their interval (the period L). The optical properties of a single-layer QD array is,
therefore, mainly determined by its constituent QD. Since the increase of the period L weakens
the interaction of the QDs, the resonance frequency of the QD array tends to the Mie resonance
frequency of an individual QD, meanwhile, the bandwidth of array decreases to the bandwidth
of the Mie resonance of a single QD. Notice that Mie resonance generally means the resonance
of a spherical particle under EM radiation. Here we use this term in broader contexts.

To further investigate the underlying physics of exciton-polariton resonances of single-layer
QD arrays, the corresponding resonance modes are calculated. The distribution of |E 2

z | at both
horizontal (x-y plane) and vertical (y-z plane) cross sections are presented in Fig. 3. Two inter-
esting properties can be observed: (1) the |E 2

z | inside QD increases with the increase of L, due
to a diminished coupling between the neighboring QDs; and (2) the EM field is observed to be
strongly localized inside the QD. The optical properties of a single QD then significantly affects
that of the QD array. Furthermore, the resonance modes for three structures with different L are
very similar, indicating an almost identical physical mechanism. This mechanism should be the
Mie resonance of an individual QD, as can be observed from the variation of |E 2

z | along the
z axis (the polarization direction of the incident light), as plotted in Fig. 4. Two nodes appear
at z = ±14 nm, indicating the formation of a standing wave as well as a resonance along this
direction. It is important to point out that this strong localization of visible light inside QD has
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Fig. 4. Variation of |E2
z | along (a) z axis and (b) x axis including the center of quantum dot,

for single-layer quantum-dot arrays with different period L. The position of quantum dot is
marked by dash dotted lines.

been already numerically observed and further employed to manipulate collective dynamics of
CuCl QD (with a radius of 20 nm) [27].

The experimentally observable transmission spectrum of a single-layer quantum-dot array
is also calculated and plotted in Fig.5. The transmission coefficients are almost 100% for fre-
quency far away from the exciton-polariton resonance, while they rapidly drop to almost zero
around the resonant frequency. Similar phenomena have been numerically observed in Ref. [4],
and an effective classical refractive index of quantum dot has further been employed to explain
the dramatic variation of transmission spectrum. More specifically, due to the strong localiza-
tion of EM field inside quantum dot around the resonance (shown in Fig. 3), the quantum dot
phenomenally has a refractive index which is much bigger than that of a non-resonant quantum
dot. The light is then almost totally reflected when its frequency is close to the exciton-polariton
resonance frequency.

The resonance in a double-layer QD array is here studied using a period of L = 60 nm in the
y− z plane, and a distance between two identical layers along the x direction (the propagation
direction of the incident light) of 40 nm. Its spectrum is plotted in Fig.(6a). As a comparison, the
spectrum of the corresponding single-layer array is also presented. Their resonance frequencies
are very different: ω0 + 0.726ωLT for the double-layer array, while only ω0 + 0.404ωLT for
the single-layer array. Furthermore, the resonance bandwidth of the double-layer structure is
much narrower than that of the single-layer array. It should be pointed out that the QDs in
the double- and single-layer structures have different local environments, namely QDs in the
double-layer are completely embedded in the dielectric while those in the single-layer are not
(see Fig.(6b) and Fig.(6c)). We believe that this is the main cause for the difference in the
resonant frequencies and bandwidths of the QD arrays.

The resonant mode of such a double-layer array is calculated and the results are plotted in
Fig. 7 and Fig. 8. The distribution of |E 2

z | is very similar to that of a dipole in character. The
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Fig. 6. (a) The normalized spectrum of a double-layer quantum-dot array as well as that
of the corresponding single-layer array. The square array has a period of L = 60 nm, and
the separation between the two layers is s = 40 nm. Schematic drawing of a double-layer
geometry (b) and a single-layer geometry (c). The quantum dot has a radius of R.

electric field is very strong inside the QD of the first layer, while it is extremely weak inside the
QD of the second layer. Furthermore, no nodes have been found in the profile of |E 2

z | along the
z axis. The underlying mechanism of the resonances of double-layer arrays are, therefore, very
different from the Mie resonance of single-layer arrays. It should be largely determined by the
quasi-dipole formed by two QDs, as shown by the resonance mode.

Based on the results presented above, we can conclude that, due to the excitation of exciton
polariton, the optical properties of a QD array vary strongly around the ground-state exciton
resonance frequency ω0 of the constituent QDs. For example, if we consider a single array
of GaAs/AlxGa1−xAs QDs with a radius of 20 nm, the corresponding resonant wavelength
is about 800 nm. An electromagnetic wave with a wavelength of about 800 nm will then be
significantly manipulated by such a QD array whose thickness is as small as 40 nm. These facts
have a bearing on the use of exciton polaritons for beating the diffraction limit of light, and QD
arrays of the kind analyzed here may form active constituents in nanoscale photonic circuits
and subwavelength components.

4. Discussion

The fact that QD arrays can manipulate strongly EM waves whose vacuum wavelengths are
as large as almost two orders of magnitude the QD’s radius may suggest the application of
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effective-medium theory. For instance, the Maxwell-Garnett model with the Clausius-Mossotti
correction has been utilized to study the polarization splitting of the gain band in QD arrays
[28]. In the framework of effective-medium theory, a complex composite material is replaced
by a homogeneous medium with effective constitutive parameters. These effective parameters
depend upon the generic and the geometrical parameters of the composite material. In other
words, the space-dependent dielectric polarization of the original composite material is substi-
tuted by the space-independent polarization of the effective homogeneous medium. The EM
field accordingly averages over material inhomogeneities. However, as shown in our results,
the nonlocal polarization of the QD is very strong around resonance, and so as the EM field
inside the QD. Therefore, depolarizing fields, induced by the significant difference between
the dielectric constants of the QD and the host semiconductor, must be taken into account in
the effective-medium theory. In contrast, the depolarizing field is inherently included in our
approach, owing to the application of the exact dielectric polarization P (Eq.(1)) of the QD.
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We now move on and discuss the relation between our method and the point dipole model
[29, 30]. When QD has a dimension much smaller than the wavelength of the EM radiation,
and the inter-dot separation was large enough to avoid the wave function overlap, the QD can
be approximated as a point dipole centered at its site. In other words, we neglect the spatial
dependence of the QD wavefunction, and replace it by a delta function. It should be empha-
sized that our approach can be modified to simulate point-dipole-model QDs. Consider a QD
centered at r0, replacing its ground-state wavefunction Φ(r) by delta function δ (r− r 0), its
dielectric polarization is accordingly simplified as P(r,ω) = T (ω)E(r,ω)δ (r− r0). Because
this simplified polarization has the same characteristics of a point dipole, we can then safely
expect that all the physical effects deduced from the point dipole model can be repeated by our
method.

Next we discuss the effects of disorder of the QD structures. In our numerical simulations,
only ideal systems are considered, that is, the radii of all QDs are assumed to be exactly identical
and equal to R, and so the period L. However, certain degrees of structural disorder inevitably
exist in actual experiments. The statistic distribution of the sizes of QDs can be described by a
Gaussian function centered around R, and so as the resonant frequencies ω 0. Consequently, the
structural disorders lead to nonhomogeneous broadenings of the exciton-polariton resonances.
The bandwidths of these resonances shown in Fig.2 and Fig.5 should, therefore, be much nar-
rower than that of realistic systems. These resonances may be even completely suppressed when
the structural disorders are strong enough.

To close this section we note that the work presented here, a general FDTD method, is just the
first part of our whole QD-based-nanophotonics project. Many useful complex structures, such
as the coupled QD-photonic-crystal-cavity [17] (and waveguide [37]) systems, will be inves-
tigated in the near future by using the numerical method introduced here. Because the optical
responses of QDs in our method can be simulated more correctly than by other semiclassical
models (the point-dipole model as an example), we believe that the obtained results will be
quite important from both fundamental physics and applied perspectives.

5. Conclusion

In conclusion, an auxiliary-differential-equation, finite-difference, time-domain approach is
proposed for studies of exciton-polariton resonances in quantum-dot (QD) arrays. The approach
is here used to study the effect of the period of the array. Due to the excitation of exciton po-
laritons, QD arrays are shown to significantly manipulate light with a wavelength around the
ground-state exciton resonance of the constituent QDs. The optical properties of a single-layer
QD array is found to be largely affected by the Mie resonance of the constituent QDs. On the
other hand, the optical properties of double-layer QD arrays is characterized by the quasi-dipole
formed by two QDs positioned in each of the two layers. Because the radius of a QD is very
smaller than the wavelength of its ground-state exciton resonance, exciton polaritons may of-
fer a solution to the diffraction limit of light, and serve as a basis for constructing nanoscale
photonic circuits as well as for the design and fabrication of subwavelength components.
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Appendix A: Discrete Fourier Transform

To obtain frequency-domain information, we should transform the temporal response of the
finite-difference time-domain (FDTD) simulation to the frequency domain by using a discrete
Fourier transform (DFT). Although it is frequently used in FDTD, there exist many conceptual
misunderstanding and misuse. Therefore, in the following we describe this transform in detail.

Assuming μ(nΔt) is the time response of one of the six electromagnetic components cali-
brated from the FDTD technique, its DFT is given by

U(N,ω) =
N

∑
n=0

μ(nΔt)exp(−inωΔt), (14)

where Δt is the FDTD time interval (also called sampling interval), N is the total time steps
used in the simulation, and i2 = −1. If the signal collection time is infinitely long (so that N
goes to infinity), we can obtain its discrete-time Fourier transform (DTFT),

U(∞,ω) =
∞

∑
n=−∞

μ(nΔt)exp(−inωΔt), (15)

which provides an approximation of the continuous-time Fourier transform of a continuous-
time function μ(t)

U(ω) =
∫ ∞

−∞
μ(t)exp(−iωt)dt. (16)

According to the Nyquist-Shannon sampling theorem, for a given bandlimited continuous-
time signal μ(t) that is uniformly sampled at a sufficient rate there remains sufficient infor-
mation in the samples that the original continuous-time signal can be perfectly reconstructed
mathematically from only those discrete samples [31]. This holds even if all of the information
in the signal between samples is discarded. Considering the calibrated signal μ(nΔt) of the
FDTD simulation as an example, if its bandwidth is B, and the sampling interval Δt satisfies

BΔt < 1, (17)

we can reconstruct the original continuous-time signal μ(t) perfectly from the infinite-length
sequences of μ(nΔt) (n → ∞), and further obtain its Fourier spectrum whose frequency res-
olution is not limited. On the other hand, based upon the condition for numerical stability in
three-dimensional FDTD, the sampling interval Δt must be bigger than Δx/

√
3c, here Δx is the

grid size [25]. It is therefore very easy to satisfy the limitation BΔt < 1 in our FDTD calculation.
However, it is impossible to collect an infinite-length sampled signal in a realistic FDTD sim-

ulation, and we can only obtain a finite-length μ(nΔt) with n≤ N. According to the uncertainty
principle, this finite sampling time duration results in an inadequate frequency resolution in the
corresponding Fourier spectrum, which is reciprocal to NΔt [31]. Thus, to achieve a reasonable
frequency resolution, it is necessary to run the simulation for a sufficiently long time.

Now let us estimate the total number of time steps N needed in our quantum dot (QD) sim-
ulation. It is known that the optical properties of QDs vary intensively in a narrow frequency
region [ω0 −ωLT ,ω0 +ωLT ], where ω0 and ωLT are the QD’s exciton resonance frequency and
exciton longitudinal-transverse splitting, respectively [3, 4, 5, 6]. It should be stressed that the
ratio ω0/ωLT of a realistic QD is generally as high as 104. Even for a frequency resolution as
ωLT /20, with a coarse grid size λ/20 = πc/10ω0, the total number of time steps N has to be
as large as 106, i.e., 100ω0/ωLT . Therefore, the calculational burden is extremely huge.
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Appendix B: Padé Approximation

When simulating high quality-factor cavities with the FDTD technique, many parametric model
based approaches have been proposed to alleviate the limited frequency resolution of the dis-
crete Fourier transform (DFT), including the Prony’s method[32], the generalized pencil-of
function method [33] and the Padé approximation [34, 35, 36]. Following the algorithm pre-
sented in [34, 35, 36], we here briefly describe the Padé approximation in the language of
classical signals and systems.

The spectral response P(ω) of the calibrated time-domain data μ(nΔt) is generally obtained
by,

P(ω) =
N

∑
n=0

μ(nΔt)exp(−inωΔt) (18)

This P(ω) can be further represented by a sum of pole series

P(ω) = Pp(ω)+Pnp(ω), (19)

where the term Pp(ω) contains all the poles of P(ω), and Pnp(ω) represents the remainder.
However, the frequency resolution of P(ω) is obstructed by the uncertainty principle discussed
in Appendix A.

To improve the accuracy of the frequency response, the recursion-scheme diagonal Padé
approximation is employed instead of the DFT to obtain the spectral response. We assume
P(ω) ≈ Pp(ω) can be approximated by a rational function

P(ω) =
[

ηN(z)
θN(z)

]
z=e−iωΔt

, (20)

where N is assumed as an even number. The numerator and denominator polynomials, η N(z)
and θN(z), are given by

ηN(z) =
N

∑
n=0

αnzn, θN(z) =
N

∑
n=0

βnzn. (21)

In order to obtain the unknown coefficients αn and βn, a recursion scheme is used [36]. Two
sequences η j(z) and θ j(z) are introduced, and they satisfy the following recursion relation,

η2 j(z) = η2 j−2(z)− zη2 j−1(z)η̄2 j−2
η̄2 j−1

, θ2 j(z) = θ2 j−2(z)− zθ2 j−1(z)η̄2 j−2
η̄2 j−1

,

η2 j+1(z) = η̄2 jη2 j−1(z)−η̄2 j−1η2 j(z)
η̄2 j−η̄2 j−1

, θ2 j+1(z) = η̄2 jθ2 j−1(z)−η̄2 j−1θ2 j(z)
η̄2 j−η̄2 j−1

, (22)

where η̄ j is the coefficient of the highest power of z in η j(z), that is, zN−�( j+1)/2	. In addition,
the starting values are given by

η0(z) =
N

∑
n=0

μ(nΔt)zn, η1(z) =
N−1

∑
n=0

μ(nΔt)zn, (23)

and θ0(z) = θ1(z) = 1.
Clearly, in Eq. 20, P(ω) is given by η0(e−iωΔt)/θ0(e−iωΔt), whereas the Padé approximation

is ηN(e−iωΔt)/θN(e−iωΔt). It should be stressed that the original time-dependent FDTD output
μ(nΔt) is usually decimated to result in a shorter sequence to save the calculational burden of
the Padé approximation. The total number N of time steps in the FDTD, may therefore be larger
than the N used in Eq. 20.
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